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Abstract 

The perturbations of standard two-beam Pendell6sung 
fringes due to simultaneous excitation of an additional 
Bragg beam have been studied. For a qualitative 
Understanding of the observed local changes in both 
fringe position and intensity, a plane-wave description 
has proved to be sufficient. Through three-beam 
calculations of Bloch-wave excitation coefficients it is 
found that the main intensity terms may be ascribed to 
the same four dispersion surface branches which are 
excited also in the corresponding two-beam case. The 
continuous variation observed in the fringe period and 
position is explained from the variation in the width of 
the dispersion surface gap. This gap varies with the sign 
and size of the deviation parameter of the simul- 
taneously excited beam. For a given deviation 
parameter the gap width also depends on the sign of the 
product between the three structure factors involved. 
The resulting dependence of the fringe displacement on 
this sign may be utilized to determine the three-phase 
structure invariant experimentally. 

Introduction 

In conventional single-crystal X-ray diffraction experi- 
ments the observed intensities may be strongly influ- 
enced by effects due to simultaneous diffraction of 
several Bragg beams (Renninger, 1937). Such effects 
are as a rule not included in the standard theoretical 
description and care is therefore generally taken in the 
X-ray case to avoid many-beam situations experi- 
mentally. 

It is well known, however, that structural infor- 
mation which is otherwise not obtainable may be 
extracted from experiments involving more than two 
beams. This has most clearly been demonstrated in the 
electron diffraction case where the application of 
dynamical many-beam effects has received consider- 
able attention (see references in, for example, Terasaki, 
Watanabe & Gjonnes, 1979; Kambe & Moli~re, 1970). 
The possibility of determining a three-phase structure 
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invariant from essentially absorption-independent 
three-beam effects was, for example, discussed by 
Kambe (1957) and Gjonnes & Hoier (1969). Con- 
clusions from the former paper were directly applied by 
Hart & Lang (1961) to interpret an observation of a 
three-beam effect in X-ray Pendellfisung fringes. The 
general validity of the electron diffraction results in 
their case was not discussed, however, and no 
calculations were given. 

Various papers exist on X-ray many-beam cases, e.g. 
Saccocio & Zajac (1965); Hildebrandt (1967); Joko & 
Fukuhara (1967); Ewald & Heno (1968); Katsnelson, 
Iveronova, Borodina & Runova (1975); Post, Chang & 
Huang (1977) and Post (1979). Comparisons between 
theory and experiments are relatively limited and in 
most cases focused on anomalous absorption effects. 
These may, however, be utilized to yield structure 
information in special cases, and Post (1977)has  
shown that the variation in anomalous absorption in a 
three-beam case may be used to determine a three- 
phase structure invariant. 

Another type of experiment for which a plane wave 
many-beam description may be applicable on a 
qualitative scale is the Pendell6sung case. This essen- 
tially absorption-independent effect has been studied in 
detail experimentally as well as theoretically in the 
two-beam case with both plane-wave and spherical- 
wave theory (e.g. Kato, 1968a,b; Tanemura & Kato, 
1972; Aldred & Hart, 1973a,b; Wada & Kato, 1977). 
In both types of theoretical description it is clear that 
the fringe period directly reflects the minimum distance 
between the dispersion surface branches. If this gap is 
perturbed due to a many-beam interaction the fringe 
distance may be expected to change as well. 

The development of methods to extract structural 
information from observed many-beam diffraction 
effects depends on a detailed theoretical understanding 
of the effects utilized. We have in this work aimed at 
obtaining a qualitative description of an observed 
three-beam effect in Pendell~sung fringes with plane- 
wave theory which for not too thin crystals is known to 
give the fringe distance correctly. The variations in the 
Bloch-wave excitation coefficients and the beam inten- 
sities have been studied in detail, and one has focused 
on the interpretation of the observed effects by means 
of the dispersion surface. Some preliminary results have 
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been given previously (Hoier, Ekrann & Aanestad, 
1978). 

Theory  

Tl~e solution of Maxwell's equations in a medium with a 
periodic susceptibility has the Bloch form (e.g. James, 
1963; Azaroff, Kaplow, Kato, Weiss, Wilson & 
Young, 1974): 

I ~ =  Y. D~ exp [2rci(vt-- K~.r)]. (1) 
h 

The crystal wave vector for solutionj is written 

K~, = K o + h -  F j. (2) 

The quantity F j is introduced as a measure of the 
Anpassung .  F j, which is antiparallel to the surface 
normal, as shown in Fig. 1, depends on the deviation 
from the Bragg condition given by the excitation error 
s h. Both F j and s h are taken to be positive in the figure. 
In Fig. 1 and below we shall only discuss many-beam 
cases where the entrance surface normal is parallel to 
the zone axis defined by the diffracting planes. 

The wave field is decomposed into two orthogonal 
directions determined by the unit vectors o and it, e.g. 

DJ h = DJho O h + DJh,~ It h, (3) 

K~ 

Fig. 1. Two-beam dispersion-surface construction with definition of 
s h and F J. 

where Oh × ~h : I~h" By introducing these components 
in the fundamental equation the following eigenvalue 
problem is obtained (e.g. Saccocio & Zajac, 1965): 
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(4) 

In this equation F s is the component of r along the 
wave vectors. We have further introduced the quantity 

re 
- Fh,  (5)  gth 2KTrV 

where r e is the classical electron radius, V is the 
unit-cell volume and F h is the structure factor. 
Absorption may be ascribed to the imaginary part of 
~h which in general may be written 

~'h = ~ ,  + i~,~,'. (6) 

In (4) this leads to an additional term i~[' in all the 
diagonal elements and terms of the type ig t ' ;  h og. nh in 
all the off-diagonal elements. The wave vector given by 
(2) is thus generally complex through the imaginary 
component F j ' '  of the eigenvalue. 

For each incident beam direction (4) may now be 
solved for the n-beam case, analytically or numerically, 
to give the 2n o r t h o n o r m a l i z e d  solutions 

I ~ =  Y (DlhoOh + D~.~h)expt2rci(vt--  K~.r)] .  (7) 
h 

The actual crystal wave fields are found from D J by 
introducing the expansion coefficients aJ. With z as a 
vector in the entrance surface, the continuity condition 
at the entrance surface is written 

E l n , o  O'ln exp  (--27rik.  l') = Z a J(O') Z 
j h 

× exp(--2~ziK~.z). (8) 

This equation refers to the a polarization state of the 
incident beam, Eln,o Gin. The n state of the incident 
beam leads independently to a corresponding equation. 

aJ(a)  is determined from (8) by multiplication with 
the factor W* followed by an integration over the 
surface. Utilizing the orthonormality of the eigen- 
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solutions one obtains, provided O'in is taken to be 
parallel to o0, 

aY(a) = Ein,o DJo * (9a) 

and correspondingly for the n state of the incident 
beam 

aJ(n)  = Ein,, ~ D:*o,~. (9b) 

For the h component of the field due to the a state of 
the incident beam we thus obtain 

Dh(O') Eln,a Z :* J D~,~ ~th) = Doo(Dh,  , ah + 
Y 

× exp[27~i(vt-- KJh. r)]. (10) 

The total intensity is hence 

I h =  Ih(a) + Ih(Tr), (11) 

where, for example, the a component is 

Ih (a  ) = [ D h ( a ) l  2 

-- ½1Z D~*(DI  D] . ,~  h) - -  , , a  ~ h a  O h  + 

J 

x exp (--2rtiF j' z) exp ( - / f l  z) l 2. (12) 

As the incident beam is assumed to be unpolarized the 
field components on average have the values 

( I e , . . o l  2 ) = ( ' e , n . ~ l  2) : ½. 

Further, F j '  and F J'' are the real and imaginary parts 
of the eigenvalue, respectively, such that the Bloch- 
wave amplitude absorption parameter can be written 

lfl = --2zcr J''. (13) 

For each polarization direction the intensity expression 
can be divided into a non-oscillating term, e.g. 

1E°n(a) = ½Z IDJo,~lE(ID]., 12 + ID[,~12) exp(--2P J z), 
J 

(14) 

and a term which oscillates with the crystal thickness z, 
i.e. 

I~S¢(a) = Y AloJh cos [27r(F i ' -  FJ')z] 
i,j 

× exp [--(/z i + #/)z]. (15) 

In (15) we have introduced the quantity 

l ,  A/oYh = "-'o~nt "-'o~nJ* :ni*,,_,h,, D/~,, + Dh,~D~,.), (16) 

which is in general complex. The imaginary part is 
negligible, however, when q/~,' ,~ ~,~,, and the phase shift 
which follows is not included in (15). 

In (14) the contribution to each beam direction h 
depends on the factor I D0J,,I 2. This is an important 
factor which weighs the contribution to the average 

intensity from each dispersion surface branch. By 
analogy with the similar factor in many-beam electron 
diffraction theory (see e.g. Hoier, 1973), we call this 
factor the Bloch-wave intensity excitation coefficient, 
eJ(a). For the independent a and z~ states of the incident 
beam we get respectively 

laJ(cr)[  2 
~ J ( a )  - - -  

IEin,al  2 

and 

8 J ( ~ )  - - -  

- I D g o l  2 (17a) 

] a J ( ~ ) l  2 

IEin,,~l 2 
- - I  Dg,,[ z (17b) 

C a l c u l a t i o n s  

All the calculations presented below refer to the 
three-beam case shown in Fig. 2. The crystal is a Si 
wedge and characteristic Mo radiation is assumed. To 
determine the generally complex eigensystem from (4) 
we have used an algorithm described by Peters & 
Wilkinson (1970). 

Each calculated value of the beam intensity corres- 
ponds to one particular incident beam direction, i.e. to 
one particular set of excitation errors sg. Further, all sg 
depend linearly on the single parameter ~ which is the 
distance from the exact three-beam condition to the tail 
of K 0 projected on the reciprocal plane considered, i.e. 
in the present case 

sg = ~ . g / I K I  

s h = O, (18) 

as ~ is assumed to be parallel to the line A g  in Fig. 2. 
The calculated results are shown as functions of ~, and 
the unit for ~ is in all figures taken to be 10 -6  ~ - i  

corresponding to an angular deviation from the 022 
Bragg angle of 0 .13"  of arc. 

From the direction of ~ chosen it follows that four of 
the six values of F calculated are associated with the 
000, 220 two-beam dispersion surface gap. Only the 

h 

El~ '' ~c ° ! ~! 

o I ! ooo 

EIn,~ 

Fig. 2. Three-beam case with the polarization directions chosen, 
parallel to Ag. 
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intensity variations along the 220 net planes within the 
Borrmann fan are hence theoretically predicted. These 
variations determine the observed Pendellfisung period 
far from the three-beam condition. It is assumed that 
the section through the dispersion surface for s h = 0 is 
the important one close to the three-beam condition as 
well. 

In Fig. 3 the calculated value, F~, of the real part of 
the eigenvalue above the ~ plane is shown as a function 
of ~. (The ~ plane passes through O normal to the zone 
axis in Fig. 2.) The branches are numbered according 
to decreasing values of F j for ~ < 0. The corresponding 
numbering for ~ > 0 follows from the symmetry 
of the eigenvector components. At ~ = 0 the solution 

i ~ ............ ~__ i i I t I I 

.= 

b 
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Fig. 3. Calculated three-beam dispersion surface as a function of ~. 
Fn F_g Fg_ n > O. 
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Fig. 4. Calculated variations in Bloch-wave amplitude absorption 
coefficients with diffraction condition. 

shows one triple- and one double-degenerate root as 
expected (Joko & Fukuhara, 1967). Of particular 
interest here is the distance between the branches 1, 2, 
3 and 4 for ~ < 0 and 1,4,  5 and 6 for ~ >  0. The 
limiting values for large Ill correspond to the values of 
the 000, 2:20 two-beam gap. 

A section through the calculated absorption surface 
is shown in Fig. 4 where the Bloch-wave amplitude 
absorption coefficient, #Y = - 2 n F  1'', is plotted as a 
function of ~. For large positive and negative values of 
the two-beam values are approached for the branches 
1, 4, 5, 6 and 1, 2, 3, 4, respectively. The limiting value 
for the branches 2 and 3 for positive and 5 and 6 for 
negative values of ~ is for large I~1 equal to the average 
value of the amplitude absorption coefficient. Three 
branches are seen to have the same minimum value at 

= 0 corresponding to the triple-degenerate root in 
Fig. 3. 

The branches which will represent the main contri- 
bution to the intensity are found from the calculated 
excitation coefficients shown in Figs. 5 and 6. Apart 
from within a length of approximately ~ = + 15, i.e. 20 
grn on the crystal, only two branches are seen to be 
strongly excited for each incident beam polarization. 
These are the ones excited also in the two-beam case, 
namely branches 1 and 4 (~ < 0) and branches 1 and 5 
(~ > 0) for the o polarization, and branches 2 and 3 (~ 
< 0) and branches 4 and 6 (~ > 0) for the n polarization 
of the incident beam. Although the excitation 
coefficients converge relatively rapidly towards the 
two-beam value for increasing ~, the distances between 
the dispersion surface branches have a slower variation 
(Fig. 3). One may consequently expect the three-beam 
effect to be most easily observed in the displacement of 
the fringe positions rather than in the variation in the 
intensity. 
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Fig. 5. Calculated excitation coefficient variation with diffraction 
condition, a polarization. 
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Typical variations in excitation coefficients near gap 
positions are seen from the I Dg~l 2 and I Dg~l 2 curves 
near ~ = 0 in Fig. 5. The extent of the area with a rapid 
variation is determined by the gap width between the 
branches 4 and 5 located at ~ = - 4  in Fig. 3. This 
dependence is also demonstrated in Fig. 6 where the 
variation of branches 3 and 6 can be ascribed to the 
corresponding large gap in Fig. 3. The coefficients of 
branches 2 and 4 on the other hand have clearly a more 
rapid variation with ~. This is due to the narrow gap 
between branches 2 and 4 which results from the small 
o, it coupling terms in (4). 

The calculated intensity variations in the 220 
P e n d e l l 6 s u n g  pattern as a function of thickness and 
are shown in Fig. 7. The ~ direction corresponds to the 
vertical direction of constant crystal thickness, and 1 
mm in this direction on the plate represents 1280 
units in the experimental set-up used. The intensity 
variation shown results from direct copying of a 
computer printout. For all ~ only one strong period 
occurs in addition to the well known fading period. In 
accordance with the discussion above this reflects the 
coupling between only two branches for each 
polarization mode. 

I i 
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Fig. 6. Calculated excitation coefficient variation with diffraction 
condition, rr polarization. 

For ~ > 0 the fringe position bends towards smaller 
thicknesses while for ~ < 0 the bending is in the 
opposite direction. As pointed out above this is due to 
the deviation of the three-beam gap from the corre- 
sponding gap in the two-beam case. The latter one 
depends linearly on the structure factor F2~0. We can 
hence define an effective structure factor for the 
three-beam case depending on the fringe shift or the 
corresponding size of the dispersion surface gap. In this 
case we obtain ;;'3-_beam --220 (~ > 0) > F2~ 0 and ]~-'3-_beam -220 (~ < 
0) < F2~ o. 

As for all three-beam cases in Si the product between 
the three structure factors involved is positive, i.e. P = 

F2~oFo2~F~o2 > 0. Theoretically this product may be 
taken to be negative through sign shifts in the structure 
factors. The dispersion surface and fringe pattern 
calculated for the case P < 0 are shown in Figs. 8 and 
9. A comparison between Fig. 3 and Fig. 8 shows the 
influence of the sign of P, which is in accordance with 
known previous results (Kambe, 1957; Gjonnes & 
Hoier, 1969; Post, 1979), i.e. cases where ~ > 0 for P > 
0 correspond to the cases where ~ < 0 for P < 0. 

The calculations given in Fig. 9 show that the fringe 
bending for the P < 0 case is opposite to the one for P 
> 0. From the bending direction alone we can therefore 
determine the sign of P, in principle, without any 
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knowledge of the size of the structure factors involved. 
This is valid for the intensity contributions from each 
polarization mode independently, as shown in Fig. 10 
for P > 0, and consequently also for their sum (Fig. 7). 
In conclusion, we can therefore neglect polarization 
effects in the interpretation and application of the 
three-beam effect discussed. 

Experimental 

The experiments have been done with a standard Lang 
camera using a Si crystal with a wedge angle of 2 °, a 
Mo tube with point focus and L-4 plates. The effective 
focus size was 0.8 and 0.1 mm in the horizontal and 
vertical directions, respectively. 

The experimental geometry corresponds to the one 
given in Fig. 2, i.e. the (220) planes are vertical and 
fulfil Bragg's law as in the usual two-beam set-up. The 
crystal has been rotated around the (220) plane normal 
bringing also the (022) planes into the Bragg position 
simultaneously. 

Along a vertical line on the illuminated crystal area, 
i.e. the equal-thickness direction, each position on the 
crystal will now approximately correspond to one 
particular diffraction condition for the simultaneously 
excited beams. This is due to the relatively small focus 
height. As in the two-beam case, however, sn varies 
negligibly with crystal height while s, varies rapidly in 
the vertical direction. 

The observed 220 PendellSsung fringes are shown in 
Fig. 11. The figure shows the usual two-beam variation 
in the far upper and far lower parts. Within a small area 
near the middle of the figure both the position and 
the intensity, however, deviate from the two-beam 
behaviour. This is the three-beam effect and the extent 
of the area where this effect is observable is seen to 
increase with crystal thickness. 

The observed effect is asymmetric with respect to the 
position s,  = 0. Above this position in the figures ss > 0 
and the fringes are seen to be displaced towards smaller 
thicknesses while the bending is in the opposite 
direction below, i.e. for s, < 0. 

Near s, = 0 a narrow line is observed, especially for 
larger thicknesses. This line has weak deficient con- 

trast with smoothly varying intensity towards the 
fringes on the s, > 0 side. On the other side, i.e. for 
small negative s,, the line shows excess contrast 
especially between the fringes for larger thicknesses. 

Discussion 

Qualitatively the agreement between Fig. 11 and the 
calculated intensity distribution in Fig. 7 is very good. 
Both the observed direction of the fringe bending and 
the thickness dependence of the three-beam effect are 
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well reproduced by the calculations performed for a 
positive three-phase structure invariant. 

Observable differences between theory and experi- 
ment can be seen, however, very close to the three- 
beam line. This fact may have several explanations. 
Firstly, the curvature of the dispersion surface is large 
near this position as seen from Fig. 3. Deviations from 
a plane-wave description may hence be essential. 
Secondly, we have an important integration effect 
which follows from the finite anode height. For the 022 
beam the consequence is that each point on the crystal 
will diffract according to a range of incident beam 
directions. The local observed intensity therefore results 
from an integration over the corresponding range in sg. 
Thirdly, the relative branch distances for I~1 ~ 100 
vary differently with ~ on the positive and negative side. 
The result is that the various terms in the o and ~r 
contributions, Fig. 10, add up asymmetrically with 
respect to the sign of ~ resulting in an asymmetric 
intensity variation across the line. 

The fringe distance in the upper and lower part of 
Fig. 10 may be interpreted in the standard two-beam 
way by means of the four parallel dispersion surface 
branches at large Ill in Fig. 3. Here branch 1 or the 
branches 3 and 6 have pure o or rr components, 
respectively. Figs. 5 and 6 show that branches 4 and 2 
approach pure o and lr character for increasing 
negative ~, while the same variation is found for 
branches 5 and 4 for increasing positive ~. The 
excitation of the branches 5 and 6 or 2 and 3 are 
negligible for large negative or large positive ~, 
respectively. As we have no coupling between pure o 
and pure zr branches the well known two-beam intensity 
oscillations and fading effect arise at large I~1. For 
decreasing positive ~ and as long as the branches 2 and 
3 are only weakly excited the two-beam argument can 
be used. The thickness fringe period, however, will 
depend on ~ through the deviation of F 1 -- 1-.5 pure o 
solution) and P - /-6 (pure it solution) from the 
two-beam value. Neglecting fading we thus expect a 
single-period intensity oscillation depending on the size 
and sign of ~. As the dispersion surface gaps, e.g. F 1 - 
P ,  are determined by the structure factor, we may in 
this case introduce an effective, three-beam structure 
factor F~, -beam. This quantity will be larger or smaller 
than the two-beam value, respectively, when ~ is 
negative or positive. 

When ~ is less than approximately +30, more than 
four branches may be excited and some will have mixed 

o and n character as can be seen from Figs. 5 and 6. 
This leads to an intensity oscillation with thickness 
which will no longer be represented by a single period, 
as several ( ~  - F j) differences will contribute. The 
width of the area on the plate where this effect is 
expected to occur is very small. The effect is therefore 
not observed in Fig. 10 due to lack of sufficient 
experimental resolution. 

The rotation of some of the field components with 
should be noticed. This effect is especially clear for 
branch 4. With the polarization direction chosen in Fig. 
2, D~ is from Figs. 5 and 6 seen to rotate from almost 
pure o to ~r within a change of 10 in dj. This corresponds 
to a change in the diffraction condition of only 
approximately 1.5". 

Conclusions 

A quantitative understanding of the variations in 
Pendel l6sung fringes has, as a rule, to be based on a 
spherical-wave description. However, as long as the 
focus is on a qualitative description of the intensity 
variations or on the fringe period in not too thin 
crystals, the simpler plane-wave treatment has demon- 
strated its applicability. This has previously been 
demonstrated for the determination of the size of 
structure factors with reasonable accuracy from two- 
beam experiments. 

In the present studies one more beam has been 
introduced experimentally to see whether additional 
structural information may be obtained in that case. 
This depends on a reliable theoretical model for the 
effects utilized. It is found for the Pendel l f sung  case 
that a sufficiently detailed qualitative understanding of 
three-beam effects may be obtained from a plane-wave 
description. Both the observed intensity variations and 
fringe bending have been reproduced theoretically. This 
fact may be ascribed to the directions of the normals of 
the contributing dispersion surface branches. These 
directions are so close to the corresponding two-beam 
directions for the ~ values of importance, that the usual 
spherical-wave interference arguments apply also in the 
present case. 

The observed anomalies near three-beam positions 
may profitably be related to the dispersion surface. 
Here the corresponding gap distances depend on the 
deviation parameter of the third beam. The sign of this 
parameter determines whether the gap distance is larger 

Fig. 11. Observed Pendellfsung fringe contrast in the 2i0 beam for the 000, 220, 022 case in Si. Mo Ka. x 10.8. 
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or smaller than the corresponding two-beam gap. For a 
given sign of the deviation parameter, the direction of 
the fringe bending is found to depend on the sign of the 
product between the three structure factors involved in 
the three-beam calculations. This effect may thus be 
utilized to determine three-phase structure invariants 
experimentally. In structure work, however, the method 
may at the present stage of development only be 
applied in a limited number of cases as relatively large 
single crystals are needed. 

To determine the branches which contribute most 
strongly to the intensity the calculations of excitation 
coefficients have proved to be essential. Only the four 
branches, which correspond to the ones in the 
two-beam case, are, through such calculations, found to 
be of importance. These branches contribute to the 
intensity oscillations in pairs corresponding to the a 
and n components. The present calculations therefore 
show that polarization contributes in the usual way to 
the fading, but are not essential for the interpretation of 
the three-beam effects studied. 
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Abstract 

A general theory is developed for kinematical scattering 
by crystals with lamellar domains, having two equal 
lattice translations b and e which form a congruent 
plane of intergrowth. The domains differ in the lattice 
constant a, electron density distribution, and inter- 
domain distances. The size of the domains is described 
by arbitrary statistical distribution functions and the 

056%7394/81/060794-08501.00 

scattered intensity is calculated by forming the Patter- 
son function and its Fourier transform. Examples with 
two types of domains are discussed. 

1. Introduction 

A great number of electron microscopic and X-ray 
investigations deal with crystals with planar faults due 
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